

The relevance and challenges of random probing security for post-quantum algorithms **Application to Raccoon Signature Scheme** Mélissa Rossi Journées du GDR-Sécurité, Caen, 24/06/2025

Based on the paper New Techniques for Random Probing Security and Application to Raccoon Signature Scheme S. Belaïd, M. Rivain and M. Rossi, published in Eurocrypt 2025, https://eprint.iacr.org/2025/278

I) The relevance of the random probing model 2) Scaling up is a big challenge 3) Random-probing Raccoon

I) The relevance of the random probing model

2) Scaling up is a big challenge

3) Random-probing Raccoon

Each strict subset of $(x_i)_{1 \le i \le n}$ is independent from x

Mélissa Rossi CryptoExperts

$$x_1, x_2, \dots, x_{n-1} \leftarrow \$$$

 $x_n \leftarrow x - (x_1 + x_2 + \dots + x_{n-1})$

- New Techniques for Random Probing Security -

Masking linear operations

$x = x_1 + x_2 + \dots + x_n$ $y = y_1 + y_2 + \dots + y_n$

Mélissa Rossi CryptoExperts - New Techniques for Random Probing Security -

Masking linear operations

 $x = x_1 + x_2 + \dots + x_n$ $y = y_1 + y_2 + \dots + y_n$

 $z \leftarrow x + y$

Mélissa Rossi CryptoExperts - New Techniques for Random Probing Security -

Masking linear operations

 $x = x_1 + x_2 + \dots + x_n$ $y = y_1 + y_2 + \dots + y_n$

 $z \leftarrow x + y$

Mélissa Rossi CryptoExperts

$\mathbf{z} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$

- New Techniques for Random Probing Security -

 $z \leftarrow x + y$

Masking linear operations

 $x = x_1 + x_2 + \dots + x_n$ $y = y_1 + y_2 + \dots + y_n$

Masking non linear operations

- Cannot be done share by share
- Example of multiplication for n = 2

$$x = x_1 + x_2$$
$$y = y_1 + y_2$$

Mélissa Rossi CryptoExperts

$\mathbf{z} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$

- New Techniques for Random Probing Security -

 $z \leftarrow x + y$

Masking linear operations

 $x = x_1 + x_2 + \dots + x_n$ $y = y_1 + y_2 + \dots + y_n$

Masking non linear operations

- Cannot be done share by share
- Example of multiplication for n = 2

$$x = x_1 + x_2$$
$$y = y_1 + y_2$$

Mélissa Rossi CryptoExperts

$\mathbf{z} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$

 $z_1 \leftarrow x_1 y_1 + x_1 y_2$ $z_2 \leftarrow x_2 y_2 + x_2 y_1$

- New Techniques for Random Probing Security -

 $z \leftarrow x + y$

Masking linear operations

 $x = x_1 + x_2 + \dots + x_n$ $y = y_1 + y_2 + \dots + y_n$

Masking non linear operations

- Cannot be done share by share
- Example of multiplication for n = 2

$$x = x_1 + x_2$$
$$y = y_1 + y_2$$

Mélissa Rossi CryptoExperts

$\mathbf{z} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$

 $z_1 \leftarrow x_1 y_1 + r + x_1 y_2$ $z_2 \leftarrow x_2 y_2 - r + x_2 y_1$

- New Techniques for Random Probing Security -

From a gadget to a circuit $k_1 = k_2$

- New Techniques for Random Probing Security -

x_1 x_2 k_1 k_2 a gadget to a circuit

Mélissa Rossi CryptoExperts r

- New Techniques for Random Probing Security -

- New Techniques for Random Probing Security -

From a gadget to a circuit $k_1 = k_2$

- New Techniques for Random Probing Security -

- New Techniques for Random Probing Security -

- New Techniques for Random Probing Security -

From a gadget to a circuit $k_1 = k_2$

- New Techniques for Random Probing Security -

Attacker view

Mélissa Rossi CryptoExperts

- New Techniques for Random Probing Security -

- New Techniques for Random Probing Security -

Mélissa Rossi

[ISW03] Y. Ishai, A. Sahai, and D. Wagner. *Private circuits: Securing hardware* against probing attacks. CRYPTO 2003

[ISW03] Y. Ishai, A. Sahai, and D. Wagner. *Private circuits: Securing hardware* against probing attacks. CRYPTO 2003

Mélissa Rossi CryptoExperts - New Techniques for Random Probing Security -

Attacker view

Random probing model

The attacker is given the value of each wire with probability p.

[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: From probing attacks to noisy *leakage*. EUROCRYPT 2014

Attacker model

- New Techniques for Random Probing Security -

- New Techniques for Random Probing Security -

Mélissa Rossi CryptoExperts

- New Techniques for Random Probing Security -

Mélissa Rossi CryptoExperts

Mélissa Rossi CryptoExperts out $\leftarrow \{\$^1, \$^2 \times \$^3, \$^3\}$

out $\leftarrow \{\$^*, k - \$^*\}$

out $\leftarrow \{\$^*, k - \$^*\}$

Mélissa Rossi CryptoExperts

t-probing model

Perfect simulation, can be immediately plugged into the black-box security.

Extra information can be handled (e.g. [dPKPR24], [BBEF+19])

Comprehensive toolbox for proofs: many gadgets and composition techniques.

I Loose reduction to the noisy leakage model

- Even with a perfectly identified leakage of a chip, the required masking order is prohibitively high.
- Masked implementations in this model may not be practically secure.

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi Raccoon: A Masking-Friendly Signature Proven in the Probing Model. CRYPTO 2024 [BBEF+19] G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi and Mehdi Tibouchi. Masking the GLP Lattice-Based Signature Scheme at Any Order. EUROCRYPT 2019

Mélissa Rossi CryptoExperts

- New Techniques for Random Probing Security -

Journées du GDR Sécurité 2025

12

t-probing model

Perfect simulation, can be immediately plugged into the black-box security.

Extra information can be handled (e.g. [dPKPR24], [BBEF+19])

Comprehensive toolbox for proofs: many gadgets and composition techniques.

Loose reduction to the noisy leakage model

- Even with a perfectly identified leakage of a chip, the required masking order is prohibitively high.
- Masked implementations in this model may not be practically secure.

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi Raccoon: A Masking-Friendly Signature Proven in the Probing Model. CRYPTO 2024 [BBEF+19] G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi and Mehdi Tibouchi. Masking the GLP Lattice-Based Signature Scheme at Any Order. EUROCRYPT 2019

Mélissa Rossi CryptoExperts

noisy leakage model

Close link with the physical leakage of a chip.

Existing studies for specific gadgets/ operations.

No theoretical framework for proofs and composition (except with leak free gadgets)

> [PR13] E. Prouff M. Rivain. Masking against Side-Channel Attacks: a Formal Security Proof EUROCRYPT 2013

[KSB24] D. Kamel, F.-X. Standaert and O. Bronchain, Information Theoretic Evaluation of Raccoon's Side-Channel Leakage. CiC 2024

- New Techniques for Random Probing Security -

t-probing model

Perfect simulation, can be immediately plugged into the black-box security.

Extra information can be handled (e.g. [dPKPR24], [BBEF+19])

Comprehensive toolbox for proofs: many gadgets and composition techniques.

I Loose reduction to the noisy leakage model

- Even with a perfectly identified leakage of a chip, the required masking order is prohibitively high.
- Masked implementations in this model may not be practically secure.

[BCMRRST25] S. Belaïd, G. Cassiers, C. Mutschler, M. Rivain, T. Roche, F.-X Standaert and A. R. Taleb. A Methodology to Achieve Provable Side-Channel Security in Real-World Implementations. CiC 2025

Mélissa Rossi

CryptoExperts

The success of the simulation depends on the probability p.

- of a chip.

Relatively high entrance price for understanding the proofs.

The toolbox remains to be designed.

- security.
- Not a lot of gadgets
- - converged yet.

p-random probing model

noisy leakage model

semi-direct link with the physical leakage

Masked implementations are provably secure up to a certain leakage probability p. For concrete chips, p can lie between 2^{-15} to 2^{-7} ([BCMRRST25])

Could be plugged into the black-box

The composition techniques have not

Close link with the physical leakage of a chip.

Existing studies for specific gadgets/ operations.

No theoretical framework for proofs and composition (except with leak free gadgets)

> [PR13] E. Prouff M. Rivain. Masking against Side-Channel Attacks: a Formal Security Proof EUROCRYPT 2013

[KSB24] D. Kamel, F.-X. Standaert and O. Bronchain Information Theoretic Evaluation of Raccoon's Side-Channel Leakage. CiC 2024

- New Techniques for Random Probing Security -

t-probing model

Perfect simulation, can be immediately plugged into the black-box security.

Extra information can be handled (e.g. [dPKPR24], [BBEF+19])

Comprehensive toolbox for proofs: many gadgets and composition techniques.

I Loose reduction to the noisy leakage model

- Even with a perfectly identified leakage of a chip, the required masking order is prohibitively high.
- Masked implementations in this model may not be practically secure.

[BCMRRST25] S. Belaïd, G. Cassiers, C. Mutschler, M. Rivain, T. Roche, F.-X Standaert and A. R. Taleb. A Methodology to Achieve Provable Side-Channel Security in Real-World Implementations. CiC 2025

the probability p.

- of a chip.

Relatively high entrance price for understanding the proofs.

The toolbox remains to be designed.

- security.
- ➡ Not a lot of gadgets
- converged yet.

Mélissa Rossi CryptoExperts

p-random probing model

noisy leakage model

The success of the simulation depends on

semi-direct link with the physical leakage

Masked implementations are provably secure up to a certain leakage probability p. For concrete chips, p can lie between 2^{-15} to 2^{-7} ([BCMRRST25])

Could be plugged into the black-box

The composition techniques have not

Close link with the physical leakage of a chip.

Existing studies for specific gadgets/ operations.

No theoretical framework for proofs and composition (except with leak free gadgets)

> [PR13] E. Prouff M. Rivain. Masking against Side-Channel Attacks: a Formal Security Proof EUROCRYPT 2013

[KSB24] D. Kamel, F.-X. Standaert and O. Bronchain Information Theoretic Evaluation of Raccoon's Side-Channel Leakage. CiC 2024

- New Techniques for Random Probing Security -

I) The relevance of the random probing model 2) Scaling up is a big challenge 3) Random-probing Raccoon

I) The relevance of the random probing model

2) Scaling up is a big challenge

3) Random-probing Raccoon

Attacker view

shares »)

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi CryptoExperts

- New Techniques for Random Probing Security -

Attacker view

 (p, ϵ, t) -threshold RPC

shares »)

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi CryptoExperts

$$\mathscr{W} = \{x_1k_1 + r, x_2k_1, k_1\}$$
 with proba $p^3(1)$
out $\leftarrow \{\$, x_2 \times k_1, k_1\}$

Mélissa Rossi CryptoExperts

$$\mathscr{W} = \{k_1, k_2\}$$
 with proba $p^2(1-p)^{17}$
out $\leftarrow \{k_1, k_2\}$

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi CryptoExperts Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi CryptoExperts Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi CryptoExperts Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Mélissa Rossi CryptoExperts Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

Mélissa Rossi CryptoExperts

Composition with threshold RPC

Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

Mélissa Rossi CryptoExperts

Composition with threshold RPC

Threshold RPC:

Propagation of the leakage and the outputs to the inputs

Except with probability $\epsilon!$

- New Techniques for Random Probing Security -

Mélissa Rossi CryptoExperts

Composition with threshold RPC

Threshold RPC:

Propagation of the leakage and the outputs to the inputs

Except with probability $\epsilon!$

Composition

All G_i are (t, p, ϵ) -threshold RPC \Longrightarrow G is (t, p, ϵ') -threshold RPC with

$\epsilon' \leq 8\epsilon.$

- New Techniques for Random Probing Security -

Tighter Compositions

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

[CFOS21] G. Cassiers, S. Faust, M. Orlt and F-X. Standaert. *Towards Tight Random Probing Security* published in Crypto 2021

Mélissa Rossi CryptoExperts

— New Techniques for Random Probing Security —

Tighter Compositions

Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

[CFOS21] G. Cassiers, S. Faust, M. Orlt and F-X. Standaert. Towards Tight Random Probing Security published in Crypto 2021

Mélissa Rossi CryptoExperts - New Techniques for Random Probing Security -

Tighter Compositions

Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

[CFOS21] G. Cassiers, S. Faust, M. Orlt and F-X. Standaert. Towards Tight Random Probing Security published in Crypto 2021

Mélissa Rossi CryptoExperts - New Techniques for Random Probing Security -

I) The relevance of the random probing model 2) Scaling up is a big challenge 3) Random-probing Raccoon

I) The relevance of the random probing model 2) Scaling up is a big challenge 3) Random-probing Raccoon

Raccoon Signature Scheme

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi Raccoon: A Masking-Friendly Signature Proven in the Probing Model. CRYPTO 2024

Mélissa Rossi CryptoExperts

Raccoon 128-16

q	549824583172097
n	512
k	5
Ι	4
d	16
Т	2

- ➡ Proof in the (d 1)-probing model
- ➡ Same assumptions as Dilithium/ML-DSA

Signatures $4 \times larger$

- New Techniques for Random Probing Security -

Raccoon Signature Scheme

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi Raccoon: A Masking-Friendly Signature Proven in the Probing Model. CRYPTO 2024

Mélissa Rossi CryptoExperts

Raccoon 128-16

q	549824583172097
n	512
k	5
I	4
d	16
Т	2

- → Proof in the (d 1)-probing model
- → Same assumptions as Dilithium/ML-DSA

Signatures $4 \times larger$

Not selected for NIST additional post-quantum signatures (RIP)

- New Techniques for Random Probing Security -

Journées du GDR Sécurité 2025

18

« Add noise to »

Add $d \cdot T$ small uniform randoms

Random Probing Raccoon

I. Generate a large matrix $\mathbf{A} \in \mathscr{R}_q^{k \times \ell}$

KeyGen

- **2.** [|s|] = (0, ..., 0)
- 3. Add noise to [|s|]
- 4. Compute $[|t|] = \mathbf{A} \cdot [|s|]$
- 5. Add noise to [|t|]
- 6. Decode [|t|] to t
- 7. The verification key is (\mathbf{A}, t)
- 8. The signing key is [|s|]

'Signature

- I. [|r|] = Refresh(0,...,0)
- 2. Add noise to [|r|]
- 3. Compute the commitment $[|w|] = \mathbf{A} \cdot [|r|]$
- 4. Add noise to [|w|]
- 5. Decode [|w|] to w
- 6. Compute the challenge c = H(w, msg, vk)
- 7. Compute the response $[|z|] = [|s|] \cdot c + [|r|]$
- 8. Decode [|z|] to z No Rejection Sampling
- 9. The signature is sig = (c, z)

Mélissa Rossi CryptoExperts

« Add noise to »

Add $d \cdot T$ small uniform randoms

Random Probing Raccoon

I. Generate a large matrix $\mathbf{A} \in \mathscr{R}_q^{k \times \ell}$

KeyGen

2. [|s|] = (0, ..., 0)

- 3. Add noise to [|s|]
- 4. Compute $[|t|] = \mathbf{A} \cdot [|s|]$
- 5. Add noise to [|t|]
- 6. Decode [|t|] to t
- 7. The verification key is (\mathbf{A}, t)
- 8. The signing key is [|s|]

Signature

- [|r|] = (0,...,0)
- 2. Add noise to [|r|]
- 3. Compute the commitment $[|w|] = \mathbf{A} \cdot [|r|]$
- 4. Add noise to [|w|]
- 5. Decode [|w|] to w
- 6. Compute the challenge c = H(w, msg, vk)
- 7. Compute the response $[|z|] = [|s|] \cdot c + [|r|]$
- 8. Decode [|z|] to z No Rejection Sampling
- 9. The signature is sig = (c, z)

Mélissa Rossi CryptoExperts

« Add noise to »

Add $d \cdot T$ small uniform randoms

Random Probing Raccoon

Mélissa Rossi CryptoExperts

« Add noise to »

Add $d \cdot T$ small uniform randoms

Random Probing Raccoon

« Add noise to »

Add $d \cdot T$ small uniform randoms

A New Notion ____

Random Probing Security with Auxiliary Inputs and public Outputs (RPS-AI-O)

 $\bigoplus_{\substack{(+) \\ (+)$

Composable (cardinal or threshold RPC) elementary gates are needed

Mélissa Rossi CryptoExperts

New gadgets

- New Techniques for Random Probing Security -

 $\bigoplus_{i=1}^{k} (i)$

Composable (cardinal or threshold RPC) elementary gates are needed

Mélissa Rossi CryptoExperts

New gadgets

To be composable, they need to include some refreshes Refresh ?

- New Techniques for Random Probing Security -

 $\bigoplus_{i=1}^{n} (i)$

Composable (cardinal or threshold RPC) elementary gates are needed

Mélissa Rossi CryptoExperts

To be composable, they need to include some refreshes

Refresh ?

- New Techniques for Random Probing Security -

New Random Probing Composable Refresh

Mélissa Rossi CryptoExperts - New Techniques for Random Probing Security -

- New Techniques for Random Probing Security -

7	8	
<i>-r</i> ₁	$-r_{2}$	

- New Techniques for Random Probing Security -

7	8		
- <i>r</i> ₁	0		

7	8	
<i>-r</i> ₁	$-r_{2}$	

- New Techniques for Random Probing Security -

Random Probing Secure version of Raccoon

Raccoon 128-16 (n = 16 shares) - $p = 2^{-24}$

Mélissa Rossi CryptoExperts

n	Signature		
w Gadgets	Original		New Gadgets
16	16		16
1.82e9	1.02e8		3.44e9
8.39e7	1.01e8		1.01e8
6.57e8	5.57e5		1.42e9
2^{-132}	1		2^{-130}

- EUF-CMA secure even if 15 values of each auxiliary inputs leak

- New Techniques for Random Probing Security -

Random Probing Secure version of Raccoon

Raccoon 128-16 (n = 16 shares) - $p = 2^{-24}$

Mélissa Rossi CryptoExperts

on	Signature		
w Gadgets	Original		New Gadgets
16	16		16
1.82e9	1.02e8	× 30	3.44e9
8.39e7	1.01e8	× 1	1.01e8
6.57e8	5.57e5	× 2500	1.42e9
2^{-132}	1		2^{-130}

- EUF-CMA secure even if 15 values of each auxiliary inputs leak

- New Techniques for Random Probing Security -

Current state of the art

Existing elementary gadgets proved (Cardinal or threshold)-RPC

- Addition
- Multiplication
- ➡ Сору
- Refresh

Composition achievable by combining the enveloppes.

Complexity and penalty factor estimation for Raccoon.

Mélissa Rossi CryptoExperts - New Techniques for Random Probing Security -

Journées du GDR Sécurité 2025

Current state of the art

Existing elementary gadgets proved (Cardinal or threshold)-RPC

- Addition
- Multiplication
- ➡ Сору
- ➡ Refresh

 \mathbf{M} Composition achievable by combining the enveloppes.

Complexity and penalty factor estimation for Raccoon.

[BCPRT20] 8. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R. Random probing security: Verification, composition, expansion and new constructions. CRYPTO 2020

[BF023] Berti, F., Faust, S., Orlt, M. *Provable secure parallel gadgets*. TCHES 2023

[DFZ19] S. Dziembowski, S. Faust, K. Zebrowski Simple refreshing in the noisy leakage model. ASIACRYPT 2019

[JMB24] V. Jahandideh, B. Mennink and L. Batina An Algebraic Approach for Evaluating Random Probing Security With Application to AES. TCHES 2024

Mélissa Rossi CryptoExperts

- New Techniques for Random Probing Security -

Journées du GDR Sécurité 2025

23

Thank you

